
 

Revised: October 27, 2025                    ICPC Pacific Northwest Contest Judging Notes Page 1 of 2 

JUDGING NOTES 
  

1. In the past, the Judges have issued very few actual clarifications - and those were only for ambiguities. 
Please read the problem statement and examine the sample test cases carefully before submitting 
any request for clarifications. 

2. The following guidelines apply to handling input/output in programs: 
• All input comes from standard input. 
• All output goes to standard output. 
• Unless the problem explicitly states otherwise, the input for a problem consists of a single 

test case. 
• Output formatting should follow the sample output in the problem statement, although extra 

whitespace within reason is acceptable. For example, if you print out a gigabyte of blanks, 
then the Judges will treat that as “wrong answer”; however, an extra blank at the end of a 
line or an extra blank line between test cases is acceptable. 

• For problems with floating point output, the Judges will accept a range of answers as correct 
provided they satisfy the constraints described in the problem statement. These constraints 
will be specified as an absolute and/or relative tolerance, which will be given. 

• There is no such thing as "Presentation Error" or "Format Error." If you misspell the word 
"impossible," for example, and the problem requires that word as output, then your 
submission will be judged as “wrong answer”. 

• Unless a problem specifically indicates that uppercase or lowercase letters are important, 
then either will be accepted. For example, "Yes" or "yes" would be treated the same, but 
"yse" would be judged as “wrong answer”. 

3. Your program may be run on multiple input files. Note that this means that if your program has more 
than one error (say, “time-limit exceeded” and “wrong answer”), then you can get either error as the 
judgment. 

4. The time limits for each problem will be specified in the problem statement. For information regarding 
memory limits, see the separate Technical Notes. 

5. Input size constraints on test cases will be given as part of the problem statements.  If the input 
contains multiple test cases, then the problem will also state an upper bound on the number of test 
cases. 

6. If you submit a solution that has a “compiler error”, then you will be notified of it (just as with any other 
error). However, “compile error” does not count toward penalty time.   

7. The problem set may include one or more interactive problems. In many respects, interactive problems 
are like any other problem – your program will read from standard input and print results to standard 
output.  However, with an interactive problem, standard input and output of your program are 
connected to another (judge) program, with which your program must communicate back and forth. 
See the back page for additional notes on interactive problems. 

 

 



 

Revised: October 27, 2025                    ICPC Pacific Northwest Contest Judging Notes Page 2 of 2 

 

Additional Judging Notes on Interactive Problems 
 

• In most programming environments, program output is buffered to speed up I/O operations. With 
interactive problems, it is crucial to make sure the output is actually sent from your program and not 
simply stored in internal buffers.  This typically means flushing the output buffers after each line of 
output (that is, after each newline character) as follows: 

o In C (or C++ using cstdio), you can use fflush(stdout). 

o A C++ output stream is flushed automatically each time you write the endl manipulator. When 
using other means or if you want to be sure, call cout.flush(). 

o In Java and Kotlin, the System.out stream has so-called “auto-flush” functionality and its buffer 
is therefore flushed automatically with each newline character.  When using other streams or if you 
want to be sure, invoke the flush() method of the stream. 

o In Python, you can use sys.stdout.flush(). 

• Interactive problems are judged in a way similar to other problems, but there are some differences: 
o When your program attempts to read data, it will wait until more data are available or until the judge 

program terminates the input (unless you read in a non-blocking way, which is beyond the scope 
of these notes).  Thus, if your program attempts to read more input than can currently be provided 
(e.g., because you forgot to flush your previous output, or because of some other reason), then the 
program will stall indefinitely and your submission will get “time-limit exceeded”. 

o As usual, the judgment given to an incorrect submission is the first error discovered, but this does 
not always mean exactly the same thing as for traditional problems.  For instance, if your 
submission to a traditional problem is too slow on a particular test case, you would get “time-limit 
exceeded” on that test case. With an interactive problem, the judgment may be “wrong answer” if 
the solution exhibits an incorrect answer before it runs out of time. 

o The time limit for an interactive problem is how much time your submission may spend; the time 
spent by the judge program is not counted towards this. 

o The judge program may behave in an adversarial way and adapt the input provided to your program 
based on your previous output, with the intent to discover errors in your algorithm. 

o Because of timing between the interactive judge program and your submission, judgments for 
incorrect submissions to interactive problems are not necessarily deterministic. We can guarantee 
the following: a judgment of “wrong answer” means that your submission produced incorrect output, 
and a judgment of “run-time error” means that your submission returned a non-zero exit code. If 
your submission does both, you may receive either judgment. 

• For some problems, the judges may provide a simple testing tool simulating the judging process.  If 
this is the case, you will find such a tool where you normally see the sample data.  Executing the 
tool with a “-h” option should describe how to use the tool.  Of course, the testing tool will only 
implement some test scenarios and only some functionality of the real judge program. 

 
 
 
 

 


